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Abstract. Experiments and numerical data on the correlation length ξ(T ) for large S disagree strongly
with the theoretical prediction based on the effective field theory prescription of the magnon physics. The
reason is that for large S, at any accessible ξ(T ), the cut-off effects from the non-magnon scales become
large and can not be treated by an effective field theory. We study these effects in a spin-wave expansion.
The corrected prediction on ξ(T ) connects the renormalized classical and the classical scaling regions
smoothly and comes close to the data.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics – 75.30.Ds Spin waves

There exist a number of quasi-2D antiferromagnetic
compounds, including spin-1/2 antiferromagnets (AFMs)
La2CuO4 and Sr2CuO2Cl2 [1], spin-1 AFMs La2NiO4

and K2NiF4 [2] and spin-5/2 AFM Rb2MnF4 [3–5] whose
magnetic behavior is well described by the 2D quantum
Heisenberg model1

H = J
∑
n,i

Sn+ı̂Sn , S2
n = S(S + 1). (1)

The low temperature properties of this model are domi-
nated by magnon excitations and can be described by an
O(3) invariant effective field theory [6–9] whose leading
part contains two parameters only: ρs (spin stiffness) and
c (spin-wave velocity)

Aleading
eff =

ρs

2c

∫ c/T

0

dτ
∫

d2x∂µR(τ, x)∂µR(τ, x), R2 = 1,

(2)

where µ = 0, 1, 2 refer to τ, x1, x2, respectively. In
their work [10], Chakravarty, Halperin and Nelson have
used renormalization group to connect this effective the-
ory with the d = 2 classical O(3) non-linear σ-model
and, among other results, predicted the asymptotic,
small temperature behavior of the correlation length
ξ ∼ c/2πρs exp(2πρs/T ). The exact mass gap of the σ-
model [11] and the two-loop corrections lead finally to the
asymptotic expression [12]

ξ =
e

8
c

2πρs
exp

(
2πρs

T

)(
1− T

4πρs
+O(T 2)

)
. (3)

a On leave from the Institute of Theoretical Physics, Univer-
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e-mail: hasenfra@itp.unibe.ch

1 We use ~ = 1, kB = 1 convention.

It has been demonstrated in a careful numerical
study [13] that the explicitly given terms in equa-
tion (3) are consistent with the numerical data at
very large correlation lengths (low temperatures) for
S = 1/2. At moderate correlation lengths, how-
ever experiments [1–5] numerical data [13–16], series
expansions [17] and a semiclassical model [18] in-
dicate a significant discrepancy which is increasing
rapidly with S. It was subsequently realized [17,19,20]
that the quantum Heisenberg model contains a sequence
of crossovers (depending on T and the parameters J and
S), and equation (3) is valid only in a corner called the
region of “renormalized classical scaling”.

This situation is unsatisfactory since the basic feature
of the quantum Heisenberg model in equation (1), namely
that it can be mapped onto a simpler model, is valid
beyond the region of renormalized classical scaling. The
purpose of this paper is to determine the corrections to
equation (3) making it applicable at moderate correlation
lengths also and for any value of S including the large S
limit (“classical scaling region”).

We calculated the corrections to equation (3) (which
are due to cut-off effects in the quantum Heisenberg
model) in leading non-trivial order of spin-wave expan-
sion and obtained

ξ′ =
e

8
c

2πρs
exp

(
2πρs

T

)(
1− T

4πρs

)
exp(−C(γ)),

γ =
2JS
T

, (4)

where the correction factor exp(−C(γ)) is given in Table 1
for different γ values. Here γ = 2JS/T ∼ Λcut/T (1 +
O(1/S)), where Λcut = c/a and a is the lattice unit. In
the limit T → 0, (S fixed), we have γ →∞, and C ∼ γ−2,
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Table 1. The correcting factor exp(−C) as the function γ =
2JS/T .

γ exp(−C) γ exp(−C) γ exp(−C)

0.0125 2.1718 1.2 0.4280 4.5 0.9410

0.025 1.1341 1.4 0.4934 5.0 0.9538

0.05 0.6180 1.5 0.5256 5.5 0.9623

0.1 0.3658 1.75 0.6021 6.0 0.9691

0.2 0.2528 2.0 0.6704 7.0 0.97771

0.4 0.2288 2.25 0.7288 8.0 0.98311

0.5 0.2399 2.5 0.7775 10.0 0.98931

0.6 0.2576 3.0 0.8484 15.0 0.99529

0.8 0.3055 3.5 0.8936 20.0 0.99736

1.0 0.3640 4.0 0.9223 30.0 0.99883

leading to the old result in equation (3). For large S and
ρs � T � Λcut (classical scaling region), we have γ → 0
and C(γ) = π/2 + ln 8 + ln γ +O(γ) which gives

1
a
ξclassical =

exp(−π2 )√
32

e

8
T

2πρs

× exp
(

2πρs

T

)(
1−O

(
Λcut

T

))
, (5)

where ρs ∼ JS2 ∼ ρclass. The fact that the prefactor
exp(−π/2)/

√
32 comes out automatically from the correc-

tions is a non-trivial test on our result2. For intermediate
γ values, exp(−C(γ)) gives a significant factor as shown in
Figure 1, where, for correlation lengths larger than 10, the
corrected theoretical prediction is compared with MC and
series expansion data and with a semiclassical model3.

We shall first discuss the steps leading to equation (4),
then we close the paper with a few remarks.
2D quantum Heisenberg model vs. the classical 2D O(3)
non-linear σ-model: In order to extend the result in
equation (3) we recall that the quantum spin model can
be mapped onto the 2D σ-model

Aσ =
1
2g

∫
d2x∂ie(x)∂ie(x), e2 = 1, i = 1, 2 (6)

under the condition that the correlation length ξ of the
quantum model satisfies ξ � c/T and ξ � a, where c/T
is the length scale defined by the temperature. In particu-
lar, one is not forced to consider the parameter region only
where the leading effective field theory in equation (2) cor-
rectly describes the magnon physics. This is important,

2 Equation (5) has the expected form [20]: for S → ∞,
the quantum Heisenberg model goes over to the standard lat-
tice regularized 2D O(3) σ-model with bare coupling gB =
JS2/T . The prefactor in equation (5) is the ratio between the
renormalization group invariant scales on the lattice and in
the MS renormalization scheme calculated long time ago in
reference [21].

3 Unfortunately, some of the most interesting large corre-
lation length MC results at S = 1 and 5/2 [16] are not yet
published and missing from this figure.

Fig. 1. The corrected theoretical prediction for the correlation
length normalized by the asymptotic behavior (including the
O(T ) corrections) in equation (3) for spin 1/2, 1 and 5/2 (the
upper, middle and lower solid lines, respectively). Correlation
lengths larger than 10 lattice units are considered only. The MC
data are from reference [14] (S = 1/2), reference [15] (S = 1),
the experimental points at S = 5/2 are taken from reference [5],
while the circles come from series expansion [17]. The dotted
lines correspond to a semiclassical model [18] which performs
well at small correlation lengths but does not have the correct
asymptotic behavior. For ξAS, at S = 1/2 the values ρs = 0.180
and c = 1.657 [13], while at S = 1 and 5/2 the SWE results [24]
were used. Similarly, γ was connected to T/2πρs with the help
of the SWE results.

since equation (2) does not give account of the cut-off
effects in the quantum Heisenberg model. The cut-off ef-
fects are related to the fact that the non-magnon length
scales like c/ρs are not much larger than the lattice unit a.
Actually, for large S, c/ρs ∼ 1/S becomes much smaller
than a. The cut-off effects enter the effective prescription
equation (2) on the 4-derivative level first [9] and con-
tribute to the O(T 2) correction in equation (3) when
T → 0 with J and S fixed. In this sense equations (2, 3)
become correct at sufficiently small temperatures for any
given S. For large S, however this happens only at astro-
nomically large correlation lengths, while the mapping to
the 2D σ-model is valid much earlier.

Let us turn now to the argument concerning the map-
ping of the 2D quantum Heisenberg model onto the clas-
sical 2D σ-model4. The partition function of the quan-
tum Heisenberg model can be represented in terms of a
path integral using coherent states, for example [23]. The
action is constructed in terms of a 3-component classi-
cal field e(τ, n1, n2), e2 = 1, where n1, n2 are coordinates
of the two-dimensional spatial lattice and τ ∈ (0, c/T )

4 For related arguments and different wording, see [12,22].
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is the continuous coordinate of the periodic imaginary
time direction. If the correlation length ξ is much larger
than c/T (which is the case for small temperatures), in
units of ξ we have a thin slab with two infinite space di-
rections. This is just a special regularization of the 2D
non-linear σ-model in equation (6).

Connecting the parameters of the quantum and the
classical models: the mapping discussed above leads to
quantitative predictions if we connect the parameters of
the quantum Heisenberg model with the coupling g of the
non-linear σ-model. A possibility is to choose a convenient
long-distance quantity and calculate it in both models.
The predictions should match leading to the connection
we are looking for.

A convenient low-energy quantity is the free energy
density f as the function of the chemical potential h5.
This was the choice in reference [12], where f(h) − f(0)
was calculated in two-loop perturbation theory in the 2D
classical σ-model (6) and also in the effective model (2)
(after introducing a chemical potential in both models in
an equivalent way). Matching the results gives [12]

1
g(p) |p=T/c

=
ρs

T
+ α+ β

T

ρs
, α = 0, β = −3

4
1

(2π)2
, (7)

where g(p) is the renormalized coupling constant of the
σ-model at momentum p. Using the relation [11]

ξ =
e

8
1
p

g(p)
2π

exp(
2π
g(p)

)
(

1 +
1

8π
g(p) + . . .

)
, (8)

equation (7) leads to the prediction in equation (3).
Calculating f(h) − f(0) in the quantum Heisenberg

model with the help of the effective model in equation (2)
(rather than using the Hamilton operator directly) is an
elegant, powerful method. The underlying assumption is
that the higher derivative terms in the effective action
Aeff , which do not contribute up to the two-loop order [9],
give controllable, small corrections. As we discussed be-
fore, due to the large cut-off effects at large S in the quan-
tum model, this assumption is true at very low tempera-
tures (astronomically large correlation lengths) only.

In order to calculate the corrections to equation (7)
due to cut-off effects, we have to abandon the effective
prescription6 and work with the Hamilton operator di-
rectly. We shall use spin-wave expansion (SWE) to derive
f(h)− f(0). It is natural to consider T an O(S) quantity
when doing thermodynamics in SWE. Then the 3 terms in
equation (7) are O(S) , O(1) and O(1/S). Our SWE runs
up to second order and so identifies corrections to the first
two terms in equation (7).

The chemical potential introduced in the classical
σ-model (see, Eq. (4) in Ref. [12]) corresponds to an

5 Unlike the magnetic field, the chemical potential is renor-
malization group invariant.

6 If T/Λcut is small, the cut-off effects can be taken into
account by including 4-derivative terms (with unknown cou-
plings) in equation (2). For ρs � T ∼ Λcut, however, the
systematic derivative expansion of chiral perturbation theory
breaks down.

imaginary twist in the quantum Heisenberg model7

H(h) = H(0) + J
∑
n

{
(cosh(ha)− 1)(S1

n+1̂
S1
n + S3

n+1̂
S3
n)

−i sinh(ha)(S1
n+1̂

S3
n − S3

n+1̂
S1
n)
}
. (9)

Using the Holstein-Primakoff creation and annihilation
operators, expanding H(h) for large S, keeping the O(S2)
and O(S) terms and performing a Bogoljubov transforma-
tion8 we obtained

H(h) = V ε0(h) +
∑
k

ωk(h)b†kbk, [bk, b
†
k′ ] = δk,k′ , (10)

where, in the infinite volume limit9

ε0(h) = −S(S + 1)J(d+
1
2

(ha)2) +
1
2

∫
d2k

(2π)2
ωk(h),

ωk(h) = 2JS[rk + (ha)2sk]1/2,

rk =
∑
i

(1− cos ki)
∑
j

(1 + cos kj),

sk =
1
2

cos k1

∑
i

(1− cos ki) + d, i, j = 1, 2.
(11)

We denoted by d and V the space dimension (d = 2
in our case) and volume, respectively. The momentum
space integral runs over the Brillouin zone. The simple
Hamilton operator in equation (10) describes free magnon
excitations and a zero-point energy. The magnon specie
around k = (0, 0) picks up a mass ∼ h2, the one around
k = (π, π) remains massless since sk goes to zero there.
It is an easy exercise to show that the contribution of
the zero point energy to the free energy per unit slab
area f(h)− f(0) is −h2ρSW

s /(2T ), where ρSW
s is the SWE

result for the spin-stiffness up to and including O(S).
Actually, this should be so in any order of the SWE, due
to the fact that ρs is identical to the helicity modulus and
h is an imaginary twist [9,25]. Adding the contribution
from the magnon excitations we get:

f(h)− f(0) = −1
2
h2 ρ

SW
s

T

+
1
a2

∫
d2k

(2π)2
ln

1− exp(− 1
T ωk(h))

1− exp(− 1
T ωk(0))

·
(12)

We have to locate the O(h2) part of the integral in
equation (12). The result can be written in the following
way:

f(h)− f(0) = −h
2

2

{
ρSW

s

T
+

1
2π

[ln
hcSW

T
− 1

2
− C(γ)]

}
,

(13)

7 The author is indebted to U. Wiese for explaining the
proper way of introducing the chemical potential into the
Heisenberg model.

8 These are standard manipulations in the literature on
SWE [24].

9 Here and in the following we suppress powers higher than
h2, since those terms in f(h) are not universal pieces in the 2D
σ-model.
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where

C(γ) =
π

2
+ ln 8 + ln γ + 2πγ2

×
∫

d2k

(2π)2

sk
ηk

ηk exp(−ηk)− 1 + exp(−ηk)
ηk[1− exp(−ηk)] |ηk=γ(rk)1/2

,

(14)

using the notation γ = 2JS/T . For T → 0, exp(−C(γ))
behaves like 1 − 1.05(1)γ−2 and equation (13) be-
comes identical with the spin-wave expanded form of
equation (7) in reference [12] obtained from the effective
theory. (There are additional ∝ (T/ρs)2 corrections to the
O(T 2) term in Eq. (3), of coarse.) This is an explicit con-
firmation of the effective action technique.

The new term ∝ C(γ) in equation (13) modifies the re-
lation between the parameters giving α = −C(γ)/(2π) in
equation (7). Equation (8) leads then to the result quoted
in equation (4).

Let us close this paper with some remarks. It would be
interesting to calculate the next order in the SWE which
would test the full 2-loop result for consistency and add
subleading cut-off corrections. This calculation seems to
be feasible.

In the large S limit the square lattice quantum Heisen-
berg model becomes identical to the standard lattice reg-
ularized O(3) σ-model for any correlation length. Due to
the existence of powerful cluster MC techniques precise
correlation length data are available from ξ = O(1) up
to O(200) (with finite size scaling techniques even be-
yond) [26] which can be compared with results in the
quantum Heisenberg model from series expansion and MC
for large S.

This paper is about cut-off effects in the quantum
Heisenberg model. We should emphasize, this has noth-
ing to do with the cut-off effects in the 2D non-linear σ-
model. We always considered large correlation lengths and
so the cut-off effects in the σ-model, which are suppressed
as ∼ ξ−2, are negligible.

The author is indebted to U. Wiese for explaining how the
chemical potential enters the quantum Heisenberg model in
our context. He is also indebted to P. Keller-Marxer for mak-
ing his S = 1 and 5/2 MC data available before publication
and also for his help in compiling data from the literature. The
author thanks him and F. Niedermayer for the critical reading
of the manuscript and R. Christianson, N. Elstner, R. Singh
and R. Vaia for providing data in numerical form for the figure.
While working on this subject, the author enjoyed the warm
hospitality of S. deAlwis, T. DeGrand and A. Hasenfratz at the
Dept. of Physics, Boulder. This work was partially supported
by the US Department of Energy and by Schweizerischer Na-
tionalfond.
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